Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.267
Filtrar
1.
Methods Mol Biol ; 2797: 103-114, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38570455

RESUMO

Surface plasmon resonance (SPR) is an optical effect at an electron-rich surface that enables affinity measurements of biomolecules in real time. It is label free and versatile, not limited to proteins, nucleic acids, and small molecules. SPR is a widely accepted method to measure not only affinity of molecular interactions but also association and dissociation rates of such interactions. In this chapter, we describe a general method to measure the affinity of a small molecule drug, MRTX849, to GDP bound HRAS, KRAS, and NRAS.


Assuntos
Acetonitrilas , Proteínas Proto-Oncogênicas p21(ras) , Pirimidinas , Ressonância de Plasmônio de Superfície , Ressonância de Plasmônio de Superfície/métodos , Proteínas Proto-Oncogênicas p21(ras)/genética , Piperazinas , Isoformas de Proteínas , Mutação
2.
Pathol Oncol Res ; 30: 1611715, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605928

RESUMO

The complex therapeutic strategy of non-small cell lung cancer (NSCLC) has changed significantly in recent years. Disease-free survival increased significantly with immunotherapy and chemotherapy registered in perioperative treatments, as well as adjuvant registered immunotherapy and targeted therapy (osimertinib) in case of EGFR mutation. In oncogenic-addictive metastatic NSCLC, primarily in adenocarcinoma, the range of targeted therapies is expanding, with which the expected overall survival increases significantly, measured in years. By 2021, the FDA and EMA have approved targeted agents to inhibit EGFR activating mutations, T790 M resistance mutation, BRAF V600E mutation, ALK, ROS1, NTRK and RET fusion. In 2022, the range of authorized target therapies was expanded. With therapies that inhibit KRASG12C, EGFR exon 20, HER2 and MET. Until now, there was no registered targeted therapy for the KRAS mutations, which affect 30% of adenocarcinomas. Thus, the greatest expectation surrounded the inhibition of the KRAS G12C mutation, which occurs in ∼15% of NSCLC, mainly in smokers and is characterized by a poor prognosis. Sotorasib and adagrasib are approved as second-line agents after at least one prior course of chemotherapy and/or immunotherapy. Adagrasib in first-line combination with pembrolizumab immunotherapy proved more beneficial, especially in patients with high expression of PD-L1. In EGFR exon 20 insertion mutation of lung adenocarcinoma, amivantanab was registered for progression after platinum-based chemotherapy. Lung adenocarcinoma carries an EGFR exon 20, HER2 insertion mutation in 2%, for which the first targeted therapy is trastuzumab deruxtecan, in patients already treated with platinum-based chemotherapy. Two orally administered selective c-MET inhibitors, capmatinib and tepotinib, were also approved after chemotherapy in adenocarcinoma carrying MET exon 14 skipping mutations of about 3%. Incorporating reflex testing with next-generation sequencing (NGS) expands personalized therapies by identifying guideline-recommended molecular alterations.


Assuntos
Acetonitrilas , Adenocarcinoma de Pulmão , Adenocarcinoma , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Piperazinas , Pirimidinas , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas/genética , Mutação , Adenocarcinoma/genética , Receptores ErbB/genética
3.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612611

RESUMO

Natural compounds like flavonoids preserve intestinal mucosal integrity through their antioxidant, anti-inflammatory, and antimicrobial properties. Additionally, some flavonoids show prebiotic abilities, promoting the growth and activity of beneficial gut bacteria. This study investigates the protective impact of Lens culinaris extract (LE), which is abundant in flavonoids, on intestinal mucosal integrity during LPS-induced inflammation. Using Caco-2 cells as a model for the intestinal barrier, the study found that LE did not affect cell viability but played a cytoprotective role in the presence of LPS. LE improved transepithelial electrical resistance (TEER) and tight junction (TJ) protein levels, which are crucial for barrier integrity. It also countered the upregulation of pro-inflammatory genes TRPA1 and TRPV1 induced by LPS and reduced pro-inflammatory markers like TNF-α, NF-κB, IL-1ß, and IL-8. Moreover, LE reversed the LPS-induced upregulation of AQP8 and TLR-4 expression. These findings emphasize the potential of natural compounds like LE to regulate the intestinal barrier and reduce inflammation's harmful effects on intestinal cells. More research is required to understand their mechanisms and explore therapeutic applications, especially for gastrointestinal inflammatory conditions.


Assuntos
Lens (Planta) , Humanos , Células CACO-2 , Lipopolissacarídeos/toxicidade , Acetonitrilas , Flavonoides , Inflamação/tratamento farmacológico
4.
J Chromatogr A ; 1722: 464856, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38579610

RESUMO

Complex mixture analysis requires high-efficiency chromatography columns. Although reversed phase liquid chromatography (RPLC) is the dominant approach for such mixtures, hydrophilic interaction liquid chromatography (HILIC) is an important complement to RPLC by enabling the separation of polar compounds. Chromatography theory predicts that small particles and long columns will yield high efficiency; however, little work has been done to prepare HILIC columns longer than 25 cm packed with sub-2 µm particles. In this work, we tested the slurry packing of 75 cm long HILIC columns with 1.7 µm bridged-ethyl-hybrid amide HILIC particles at 2,100 bar (30,000 PSI). Acetonitrile, methanol, acetone, and water were tested as slurry solvents, with acetonitrile providing the best columns. Slurry concentrations of 50-200 mg/mL were assessed, and while 50-150 mg/mL provided comparable results, the 150 mg/mL columns provided the shortest packing times (9 min). Columns prepared using 150 mg/mL slurries in acetonitrile yielded a reduced minimum plate height (hmin) of 3.3 and an efficiency of 120,000 theoretical plates for acenaphthene, an unretained solute. Para-toluenesulfonic acid produced the lowest hmin of 1.9 and the highest efficiency of 210,000 theoretical plates. These results identify conditions for producing high-efficiency HILIC columns with potential applications to complex mixture analysis.


Assuntos
Acetonitrilas , Benzenossulfonatos , Interações Hidrofóbicas e Hidrofílicas , Acetonitrilas/química , Cromatografia Líquida/métodos , Cromatografia de Fase Reversa/métodos , Cromatografia de Fase Reversa/instrumentação , Metanol/química , Solventes/química , Acetona/química , Tamanho da Partícula , Pressão , Água/química
5.
J Chromatogr A ; 1722: 464852, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38581974

RESUMO

Xiangdan Injection are commonly used traditional Chinese medicine formulations for the clinical treatment of cardiovascular diseases. However, the trace components of Dalbergia odorifera in Xiangdan Injection pose a challenge for evaluating its quality due to the difficulty of detection. This study proposes a technology combining dispersive liquid-liquid microextraction and back-extraction (DLLME-BE) along with Bar-Form-Diagram (BFD) to address this issue. The proposed combination method involves vortex-mixing tetradecane, which has a lower density than water, with the sample solution to facilitate the transfer of the target components. Subsequently, a new vortex-assisted liquid-liquid extraction step is performed to enrich the components of Dalbergia odorifera in acetonitrile. The sample analysis was performed on HPLC-DAD, and a clear overview of the chemical composition was obtained by integrating spectral and chromatographic information using BFD. The combination of BFD and CRITIC-TOPSIS strategies was used to optimize the process parameters of DLLME-BE. The determined optimal sample pre-treatment process parameters were as follows: 200 µL extraction solvent, 60 s extraction time, 50 µL back-extraction solvent, and 90 s back-extraction time. Based on the above strategy, a total of 29 trace components, including trans-nerolidol, were detected in the Xiangdan Injection. This combination technology provides valuable guidance for the enrichment analysis of trace components in traditional Chinese medicines.


Assuntos
Dalbergia , Medicamentos de Ervas Chinesas , Microextração em Fase Líquida , Microextração em Fase Líquida/métodos , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Dalbergia/química , Limite de Detecção , Acetonitrilas/química , Reprodutibilidade dos Testes
6.
JCO Precis Oncol ; 8: e2300644, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579193

RESUMO

PURPOSE: KRAS is the most commonly mutated driver oncogene in non-small cell lung cancer (NSCLC). Sotorasib and adagrasib, KRASG12C inhibitors, have been granted accelerated US approval; however, hepatotoxicity is a common side effect with higher rates in patients treated with sotorasib proximal to checkpoint inhibitor (CPI) therapy. The aim of this study was to assess the feasibility and safety of adagrasib after discontinuation of sotorasib because of treatment-related grade 3 hepatotoxicity through real-world and clinical cases. METHODS: Medical records from five patients treated in real-world settings were retrospectively reviewed. Patients had locally advanced or metastatic KRASG12C-mutated NSCLC and received adagrasib after sotorasib in the absence of extracranial disease progression. Additional data were collected for 12 patients with KRASG12C-mutated NSCLC enrolled in a phase Ib cohort of the KRYSTAL-1 study and previously treated with sotorasib. The end points associated with both drugs included timing and severity of hepatotoxicity, best overall response, and duration of therapy. RESULTS: All patients were treated with CPIs followed by sotorasib (initiated 0-64 days after CPI). All five real-world patients experienced hepatotoxicity with sotorasib that led to treatment discontinuation, whereas none experienced treatment-related hepatotoxicity with subsequent adagrasib treatment. Three patients from KRYSTAL-1 transitioned from sotorasib to adagrasib because of hepatotoxicity; one experienced grade 3 ALT elevation on adagrasib that resolved with therapy interruption and dose reduction. CONCLUSION: Adagrasib may have a distinct hepatotoxicity profile from sotorasib and is more easily combined with CPIs either sequentially or concurrently. These differences may be used to inform clinical decisions regarding an initial KRASG12C inhibitor for patients who recently discontinued a CPI or experience hepatotoxicity on sotorasib.


Assuntos
Acetonitrilas , Carcinoma Pulmonar de Células não Pequenas , Doença Hepática Induzida por Substâncias e Drogas , Neoplasias Pulmonares , Piperazinas , Piridinas , Pirimidinas , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Doença Hepática Induzida por Substâncias e Drogas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Piperazinas/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/genética , Piridinas/uso terapêutico , Pirimidinas/uso terapêutico , Estudos Retrospectivos
7.
Se Pu ; 42(4): 368-379, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38566426

RESUMO

Pesticide residues may be present in olive oil because pesticides are applied to olive trees during their cultivation and growth for pest prevention and some of these pesticides are not easily degraded. Studies on pesticide residues in olive oil have mainly focused on the detection of single types of pesticide residues, and reports on the simultaneous detection of multiple pesticide residues are limited. At present, hundreds of pesticides with different polarities and chemical properties are used in practice. In this study, an analytical method based on fully automatic QuEChERS pretreatment instrument coupled with gas chromatography-quadrupole time-of-flight mass spectrometry (GC-QTOF-MS) was established for the rapid determination of 222 pesticide residues in olive oil. The effects of acetonitrile acidification concentration, n-hexane volume, oscillation time, centrifugation temperature, and purification agent on the determination of the 222 pesticide residues were investigated. First, ions with good responses and no obvious interference were selected for quantification and characterization. The purification process was then developed by setting the parameters of the fully automatic QuEChERS pretreatment instrument to optimal values. The sample was extracted with acetonitrile containing 2% formic acid, and the supernatant was purified by centrifugation in a centrifuge tube containing 400 mg N-propylethylenediamine (PSA), 400 mg octadecylsilane-bonded silica gel (C18), and 1200 mg anhydrous magnesium sulfate. The purified solution was blown dry with nitrogen and then fixed with ethyl acetate for instrumental analysis. Finally, a matrix standard solution was used for quantification. The method was validated in terms of matrix effects, linear ranges, limits of detection (LODs) and quantification (LOQs), accuracies, and precisions. The results showed that 86.04% of the 222 pesticides had linear ranges of 0.02-2.00 µg/mL, 10.81% had linear ranges of 0.10-2.00 µg/mL, and 3.15% had linear ranges of 0.20-2.00 µg/mL. The pesticide residues showed good relationships within their respective linear ranges, and the correlation coefficients (R2) were greater than 0.99. The LODs of all tested pesticides ranged from 0.002 to 0.050 mg/kg, and their LOQs ranged from 0.007 to 0.167 mg/kg. Among the 222 pesticides determined, 170 pesticides had LOQs of 0.007 mg/kg while 21 pesticides had LOQs of 0.017 mg/kg. At the three spiked levels of 0.2, 0.5, and 0.8 mg/kg, 79.58% of all tested pesticides had average recoveries of 70%-120% while 65.92% had average recoveries of 80%-110%. In addition, 93.54% of all tested pesticides had relative standard deviations (RSDs, n=6)<10% while 98.35% had RSDs (n=6)<20%. The method was applied to 14 commercially available olive oil samples, and seven pesticides were detected in the range of 0.0044-0.0490 mg/kg. The residues of fenbuconazole, chlorpyrifos, and methoprene did not exceed the maximum limits stated in GB 2763-2021. The maximum residual limits of molinate, monolinuron, benalaxyl, and thiobencarb have not been established. The method utilizes the high mass resolution capability of TOF-MS, which can improve the detection throughput while ensuring good sensitivity. In addition, high-resolution and accurate mass measurements render the screening results more reliable, which is necessary for the high-throughput detection of pesticide residues. The use of a fully automatic QuEChERS instrument in the pretreatment step reduces personnel errors and labor costs, especially when a large number of samples must be processed, thereby offering significant advantages over other approaches. Moreover, the method is simple, rapid, sensitive, highly automatable, accurate, and precise. Thus, it meets requirements for the high-throughput detection of pesticide residues in olive oil and provides a reference for the development of detection methods for pesticide residues in other types of oils as well as the automatic pretreatment of complex matrices.


Assuntos
Resíduos de Praguicidas , Praguicidas , Resíduos de Praguicidas/análise , Azeite de Oliva , Espectrometria de Massas em Tandem/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Praguicidas/análise , Acetonitrilas/análise
8.
Sci Total Environ ; 927: 172237, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582105

RESUMO

Dichloroacetonitrile (DCAN), an emerged nitrogenous disinfection by-product (N-DBP) in drinking water, has garnered attention owing to its strong cytotoxicity, genotoxicity, and carcinogenicity. However, there are limited studies on its potential hepatotoxicity mechanisms. Understanding hepatotoxicity is essential in order to identify and assess the potential risks posed by environmental pollutants on liver health and to safeguard public health. Here, we investigated the viability, reactive oxygen species (ROS) levels, and cell cycle profile of DCAN-exposed HepG2 cells and analyzed the mechanism of DCAN-induced hepatotoxicity using both transcriptomic and metabolomic techniques. The study revealed that there was a decrease in cell viability, increase in ROS production, and increase in the number of cells in the G2/M phase with an increase in the concentration of DCAN. Omics analyses showed that DCAN exposure increased cellular ROS levels, leading to oxidative damage in hepatocytes, which further induced DNA damage, cell cycle arrest, and cell growth impairment. Thus, DCAN has significant toxic effects on hepatocytes. Integrated analysis of transcriptomics and metabolomics offers new insights into the mechanisms of DCAN-induced hepatoxicity.


Assuntos
Acetonitrilas , Metabolômica , Transcriptoma , Humanos , Transcriptoma/efeitos dos fármacos , Células Hep G2 , Acetonitrilas/toxicidade , Poluentes Químicos da Água/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo
9.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38674002

RESUMO

2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO•), a persistent nitronyl nitroxide radical, has been used for the detection and trapping of nitric oxide, as a redox mediator for batteries, for the activity estimation of antioxidants, and so on. However, there is no report on the reactivity of PTIO• in the presence of redox-inactive metal ions. In this study, it is demonstrated that the addition of scandium triflate, Sc(OTf)3 (OTf = OSO2CF3), to an acetonitrile (MeCN) solution of PTIO• resulted in an electron-transfer disproportionation to generate the corresponding cation (PTIO+) and anion (PTIO-), the latter of which is suggested to be stabilized by Sc3+ to form [(PTIO)Sc]2+. The decay of the absorption band at 361 nm due to PTIO•, monitored using a stopped-flow technique, obeyed second-order kinetics. The second-order rate constant for the disproportionation, thus determined, increased with increasing the Sc(OTf)3 concentration to reach a constant value. A drastic change in the cyclic voltammogram recorded for PTIO• in deaerated MeCN containing 0.10 M Bu4NClO4 was also observed upon addition of Sc(OTf)3, suggesting that the large positive shift of the one-electron reduction potential of PTIO• (equivalent to the one-electron oxidation potential of PTIO-) in the presence of Sc(OTf)3 may result in the disproportionation. When H2O was added to the PTIO•-Sc(OTf)3 system in deaerated MeCN, PTIO• was completely regenerated. It is suggested that the complex formation of Sc3+ with H2O may weaken the interaction between PTIO- and Sc3+, leading to electron-transfer comproportionation to regenerate PTIO•. The reversible disproportionation of PTIO• was also confirmed by electron paramagnetic resonance (EPR) spectroscopy.


Assuntos
Acetonitrilas , Óxidos N-Cíclicos , Escândio , Água , Acetonitrilas/química , Água/química , Óxidos N-Cíclicos/química , Escândio/química , Transporte de Elétrons , Oxirredução , Cinética , Íons/química , Imidazóis/química
10.
J Chromatogr A ; 1724: 464898, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38669941

RESUMO

The present research work was dedicated to developing an efficient method based on liquid-liquid chromatography (centrifugal partition chromatography, CPC) applicable to routine purifications of ochratoxins (OT) from the liquid culture of the strain A. albertensis SZMC 2107. The crude extract contained numerous components in addition to OTA (90.1 %,) and OTB (1.1 %,) according to HPLC examinations. For the separation of OTs by CPC, several tertiary systems based on acetonitrile, acetone, and short-chain alcohols were examined to find the most applicable biphasic system. The hexane/i-propanol/water 35:15:50 system supplemented with 0.1 % acetic acid was found to be the most efficient for use in CPC separation. Using liquid-liquid instrumental separation, the two OTs, namely OTA (2.23 mg) and OTB (0.031 mg), were successfully isolated with 96.3 % and-72.8 % purity, respectively, from 1 L ferment broth. The identities and purities of the purified components were confirmed and the performance parameters of each separation step and the whole procedure were determined. The developed method could be used effectively to purify OTs for analytical or toxicological applications.


Assuntos
Ocratoxinas , Ocratoxinas/análise , Ocratoxinas/isolamento & purificação , Ocratoxinas/química , Cromatografia Líquida de Alta Pressão/métodos , Centrifugação/métodos , Cromatografia Líquida/métodos , Acetonitrilas/química , Acetona/química
11.
J Chromatogr A ; 1722: 464864, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598890

RESUMO

In this study, a novel piperidinium-sulfonate based zwitterionic hydrophilic monolith was prepared through thermally initiated co-polymerization of a piperidinium-sulfonate monomer 3-(4-((methacryloyloxy)methyl)-1-methylpiperidin-1-ium-1-yl)propane-1-sulfonate (MAMMPS), and a hydrophilic crosslinker N,N'-methylenebisacrylamide (MBA) using n-propanol and H2O as porogenic system. Satisfactory mechanical and chemical stabilities, good repeatability and high column efficiency (120,000 N/m) were obtained on the optimal monolith. The resulting poly(MAMMPS-co-MBA) monolith showed a typical HILIC retention behavior over an ACN content range between 5 and 95 %. Furthermore, this column exhibited good separation performance for various polar compounds. Compared to quaternary ammonium-sulfonate based zwitterionic hydrophilic monolith, i.e. poly(N,N-dimethyl-N-methacryloxyethyl-N-(3-sulfopropyl)ammonium betaine-co-MBA), the poly(MAMMPS-co-MBA) monolith displayed stronger retention and better selectivity for the tested phenolic and amine compounds at different pH conditions. Finally, this column was applied for the separation of six sulfonamide antibiotics, and the analytical characteristics of the method were evaluated in terms of precision, repeatability, limits of detection (LOD) and quantitation (LOQ). Overall, this study not only developed a novel HILIC monolithic column, but also proved the potential of piperidinium-sulfonate based zwitterionic chemistry as stationary phase, which further increased the structure diversity of zwitterionic HILIC stationary phases.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Piperidinas , Piperidinas/isolamento & purificação , Piperidinas/química , Reprodutibilidade dos Testes , Ácidos Sulfônicos/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Acrilamidas/química , Polimerização , Acetonitrilas/química
12.
Eur J Drug Metab Pharmacokinet ; 49(3): 343-353, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38472634

RESUMO

BACKGROUND AND OBJECTIVE: In vitro glucuronidation of 17ß-estradiol (estradiol) is often performed to assess the role of uridine 5'-diphospho-glucuronosyltransferase 1A1 (UGT1A1) in xenobiotic/drug metabolism. The objective of this study was to determine the effects of four commonly used organic solvents [i.e., dimethyl sulfoxide (DMSO), methanol, ethanol, and acetonitrile] on the glucuronidation kinetics of estradiol, which can be glucuronidated at C3 and C17 positions. METHODS: The impacts of organic solvents on estradiol glucuronidation were determined by using expressed UGT enzymes and liver microsomes from both human and animals. RESULTS: In human liver microsomes (HLM), methanol, ethanol, and acetonitrile significantly altered estradiol glucuronidation kinetics with increased Vmax (up to 2.6-fold) and CLmax (up to 2.8-fold) values. Altered estradiol glucuronidation in HLM was deduced to be attributed to the enhanced metabolic activities of UGT1A1 and UGT2B7, whose activities differ at the two glucuronidation positions. The effects of organic solvents on estradiol glucuronidation were glucuronidation position-, isozyme-, and solvent-specific. Furthermore, both ethanol and acetonitrile have a greater tendency to modify the glucuronidation activity of estradiol in animal liver microsomes. CONCLUSION: Organic solvents such as methanol, ethanol, and acetonitrile showed great potential in adjusting the glucuronidation of estradiol. DMSO is the most suitable solvent due to its minimal influence on estradiol glucuronidation. Researchers should be cautious in selecting appropriate solvents to get accurate results when assessing the metabolism of a new chemical entity.


Assuntos
Dimetil Sulfóxido , Estradiol , Etanol , Glucuronídeos , Glucuronosiltransferase , Microssomos Hepáticos , Solventes , Microssomos Hepáticos/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Estradiol/metabolismo , Estradiol/farmacologia , Glucuronosiltransferase/metabolismo , Humanos , Solventes/farmacologia , Animais , Cinética , Etanol/metabolismo , Etanol/farmacologia , Glucuronídeos/metabolismo , Dimetil Sulfóxido/farmacologia , Metanol/farmacologia , Metanol/metabolismo , Acetonitrilas/farmacologia , Acetonitrilas/metabolismo
13.
Int J Med Sci ; 21(4): 593-600, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464834

RESUMO

Introduction: Broccoli is a cruciferous vegetable that has been shown to have numerous potential therapeutic benefits because of its bioactive compounds. Methods: In this study, we compared the bioactive efficacy of cooked and uncooked (fresh) stems and florets of broccoli extracted with three different solvents: acetonitrile, methanol, and aqueous extracts. The extraction yield and antioxidant and antibacterial potential of different broccoli extracts were examined. Results: Fresh and boiled floret stem extracts increased the extraction yield. The extraction yields were higher for the methanol and acetonitrile extracts than for the aqueous extracts. The antioxidant efficacy of the different extracts was studied using ABTS, DPPH, and metal ion reduction assays. The acetonitrile and aqueous extracts exhibited higher antioxidant activities than the methanolic extracts in different antioxidant assays. In addition, increased antioxidant activity was observed in fresh florets and boiled broccoli stems. TPC and TFC contents were higher in the methanolic extracts than in the aqueous extracts. Similar to antioxidant activities, anti-inflammatory activities were found to be higher in the acetonitrile and aqueous extracts, particularly in boiled stems and fresh florets. Broccoli extracts have been shown to be active against Bacillus subtilis and moderately effective against Pseudomonas aeruginosa and Staphylococcus aureus. Conclusions: Acetonitrile and aqueous extraction of broccoli might be an ideal choice for extraction methods, which show increased extraction yield and antioxidant and anti-inflammatory potentials. Utilization of phytomolecules from natural sources is a promising alternative approach to synthetic drug development.


Assuntos
Brassica , Brassica/química , Antioxidantes/química , Metanol/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Água , Acetonitrilas , Anti-Inflamatórios
14.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473945

RESUMO

A reversed-phase high-performance liquid chromatographic (HPLC) method was developed for the simultaneous determination of the potential impurities of dexketoprofen, including the distomer R-ketoprofen. After screening the separation capability of four polysaccharide columns (Lux Amylose-1, Lux Amylose-2, Lux Cellulose-1 and Lux Cellulose-2) in polar organic and in reversed-phase modes, appropriate enantioseparation was observed only on the Lux Amylose-2 column in an acidified acetonitrile/water mixture. A detailed investigation of the mobile phase composition and temperature for enantio- and chemoselectivity showed many unexpected observations. It was observed that both the resolution and the enantiomer elution order can be fine-tuned by varying the temperature and mobile phase composition. Moreover, hysteresis of the retention times and enantioselectivity was also observed in reversed-phase mode using methanol/water mixtures on amylose-type columns. This could indicate that the three-dimensional structure of the amylose column can change by transitioning from a polar organic to a reversed-phase mode, which affects the enantioseparation process. Temperature-dependent enantiomer elution order and rare enthalpic/entropic controlled enantioseparation in the operative temperature range were also observed in reversed-phase mode. To find the best methodological conditions for the determination of dexketoprofen impurities, a full factorial optimization design was performed. Using the optimized parameters (Lux Amylose-2 column with water/acetonitrile/acetic acid 50/50/0.1 (v/v/v) at a 1 mL/min flow rate at 20 °C), baseline separations were achieved between all compounds within 15 min. Our newly developed HPLC method was validated according to the current guidelines, and its application was tested on commercially available pharmaceutical formulations. According to the authors' knowledge, this is the first study to report hysteretic behavior on polysaccharide columns in reversed-phase mode.


Assuntos
Amilose , Cromatografia de Fase Reversa , Cetoprofeno/análogos & derivados , Trometamina , Amilose/química , Temperatura , Polissacarídeos/química , Celulose/química , Cromatografia Líquida de Alta Pressão/métodos , Água , Acetonitrilas , Estereoisomerismo
15.
PLoS One ; 19(3): e0300416, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483950

RESUMO

About 30% of the FDA approved drugs in 2021 were protein-based therapeutics. However, therapeutic proteins can be unstable and rapidly eliminated from the blood, compared to conventional drugs. Furthermore, on-target but off-tumor protein binding can lead to off-tumor toxicity, lowering the maximum tolerated dose. Thus, for effective treatment therapeutic proteins often require continuous or frequent administration. To improve protein stability, delivery and release, proteins can be encapsulated inside drug delivery systems. These drug delivery systems protect the protein from degradation during (targeted) transport, prevent premature release and allow for long-term, sustained release. However, thus far achieving high protein loading in drug delivery systems remains challenging. Here, the use of protein desolvation with acetonitrile as an intermediate step to concentrate monoclonal antibodies for use in drug delivery systems is reported. Specifically, trastuzumab, daratumumab and atezolizumab were desolvated with high yield (∼90%) into protein nanoparticles below 100 nm with a low polydispersity index (<0.2). Their size could be controlled by the addition of low concentrations of sodium chloride between 0.5 and 2 mM. Protein particles could be redissolved in aqueous solutions and redissolved antibodies retained their binding activity as evaluated in cell binding assays and exemplified for trastuzumab in an ELISA.


Assuntos
Nanopartículas , Neoplasias , Humanos , Cloreto de Sódio/uso terapêutico , Sistemas de Liberação de Medicamentos , Trastuzumab/uso terapêutico , Neoplasias/tratamento farmacológico , Acetonitrilas
16.
Sci Total Environ ; 926: 171995, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38547977

RESUMO

Dichloroacetonitrile (DCAN) is an emerging disinfection by-product (DBP) that is widespread in drinking water. However, the pathway for DCAN formation from aromatic amino acids remains unclear, leading to a lack of an understanding of its explicit fate during chloramination. In this study, we investigated the specific formation mechanism of DCAN during the chloramination of phenylalanine based on reaction kinetics and chemical thermodynamics. The reason for differences between aldehyde and decarboxylation pathways was explained, and kinetic parameters of the pathways were obtained through quantum chemistry calculations. The results showed that the reaction rate constant of the rate-limiting step of the aldehyde pathway with 1.9 × 10-11 s-1 was significantly higher than that of decarboxylation (3.6 × 10-16 s-1 M-1), suggesting that the aldehyde pathway is the main reaction pathway for DCAN formation during the chloramination of phenylalanine to produce DCAN. Subsequently, theoretical calculations were performed to elucidate the effect of pH on the formation mechanism, which aligned well with the experimental results. Dehydrohalogenation was found to be the rate-limiting step under acidic conditions with reaction rate constants higher than those of the rate-limiting step (expulsion of amines) under neutral conditions, increasing the rate of DCAN formation. This study highlights the differences in DCAN formation between the decarboxylation and aldehyde pathways during the chloramination of precursors at both molecular and kinetic levels, contributing to a comprehensive understanding of the reaction mechanisms by which aromatic free amino acids generate DCAN.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Fenilalanina , Halogenação , Purificação da Água/métodos , Desinfecção , Acetonitrilas/química , Aldeídos , Poluentes Químicos da Água/análise
17.
Artigo em Inglês | MEDLINE | ID: mdl-38522130

RESUMO

Accurate monitoring of UV-filters exposure levels in human plasma is a challenge because of the significant differences in the physicochemical properties of UV-filters, as well as the matrix effect caused by abundant proteins and phospholipids in plasma. Therefore, an effective and rapid method for simultaneous determination of 14 UV-filters in human plasma using protein precipitation-solid phase extraction (SPE) coupled with liquid chromatography tandem mass spectrometry (LC-MS/MS) was developed. Acetonitrile with 0.1 % formic acid and 10 % isopropanol (v/v) were used as mobile phases. A gradient elution on an ACQUITY UPLC BEH-C18 column at 30 °C and 0.3 mL/min flow rate was applied for separation. The electrospray ionization positive or negative modes were selected to determine the corresponding analyte to increase selectivity and sensitivity. Results showed that acetonitrile-tetrahydrofuran (v/v, 8:2) as the extraction solvent can effectively precipitate protein in plasma and improve the solubility of UV-filters. The HybridSPE cartridge improved the removal efficiency of phospholipids, while 1 mL of methanol elution increased the extraction recoveries of targets. Fourteen UV-filters achieved good linearities, low detection limits (0.050 to 0.10 µg/L) and quantification limits (0.10 to 1.0 µg/L). Method accuracy and precision, extraction recoveries, and storage stabilities of all analytes met the criterion of 80-120 %. Moreover, this method was successfully applied for the determination of UV-filters in plasma randomly collected from adults. Nine of 14 UV-filters were determined and their concentrations were distributed widely, suggesting a big variation of individual UV-filters exposure.


Assuntos
Fosfolipídeos , Espectrometria de Massas em Tandem , Adulto , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Fosfolipídeos/química , Espectrometria de Massa com Cromatografia Líquida , Acetonitrilas , Extração em Fase Sólida/métodos
18.
J Pharm Biomed Anal ; 243: 116056, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428245

RESUMO

BGT-002, a new type of ATP-citrate lyase inhibitor, is a promising therapeutic for treatment of hypercholesterolemia. After an oral administration of BGT-002 to subjects, it underwent extensive metabolism and an acyl monoglucuronide (ZM326E-M2) on 1- carboxylic acid group was the major circulating metabolite. In this study, an LC-MS/MS method was developed and validated for the simultaneous determination of BGT-002 and ZM326E-M2 in plasma and the evaluation of their pharmacokinetic characteristics in humans. After extraction from the plasma by acetonitrile-induced protein precipitation, the analytes were separated on a Waters ACQUITY UPLC® BEH C18 column using acetonitrile and 2 mM ammonium acetate containing 0.1% formic acid as the mobile phase for gradient elution. Negative electrospray ionization was performed using multiple reaction monitoring (MRM) of m/z 501.3→325.4 for ZM326E-M2 and m/z 507.3→331.2 for D6-ZM326E-M2, and pseudo-MRM of m/z 325.3→325.3 for BGT-002 and m/z 331.3→331.3 for D6-ZM326E, respectively. The method was validated with respect to accuracy, precision, linearity, stability, selectivity, matrix effect, and recovery. The analytical range in human plasma was linear over a concentration range of 0.0500-50.0 µg/mL for BGT-002 and 0.0100-10.0 µg/mL for ZM326E-M2. The pharmacokinetic results showed that after a single oral administration of 100 mg BGT-002, the parent drug was rapidly absorbed with a mean time to peak concentration (tmax) of 1.13 h, compared with BGT-002, the tmax (4.00 h) of ZM326E-M2 was significantly delayed. The peak concentration and plasma exposure of ZM326E-M2 were about 14.1% and 19.5% of the parent drug, suggesting that attention should be paid to the safety and efficacy of ZM326E-M2 in clinical research.


Assuntos
Glucuronídeos , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Administração Oral , Acetonitrilas
19.
J Hazard Mater ; 469: 133842, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38432088

RESUMO

Antibiotic exist in various states after entering agricultural soil through the application of manure, including the aqueous state (I), which can be directly absorbed by plants, and the auxiliary organic extraction state (III), which is closely associated with the pseudo-permanence of antibiotics. However, effective analytical methods for extracting and affecting factors on fractions of different antibiotic states remain unclear. In this study, KCl, acetonitrile/Na2EDTA-McIlvaine buffer, and acetonitrile/water were successively used to extract states I, II, and III of 21 antibiotics in soil, and the recovery efficiency met the quantitative requirements. Random forest classification and variance partitioning analysis revealed that dissolved organic matter, pH, and organic matter were important factors affecting the recovery efficiency of antibiotic in states I, II, and III, respectively. Additionally, 65-day spiked soil experiments combined with Mantel test analysis suggested that pH, organic acids, heavy metals, and noncrystalline minerals differentially affected antibiotic type and state. Importantly, a structural equation model indicated that organic acids play a crucial role in the fraction of antibiotic states. Overall, this study reveals the factors influencing the fraction of different antibiotic states in soil, which is helpful for accurately assessing their ecological risk.


Assuntos
Metais Pesados , Poluentes do Solo , Solo/química , Antibacterianos , Metais Pesados/análise , Agricultura , Compostos Orgânicos/análise , Acetonitrilas , Poluentes do Solo/análise
20.
J Pharm Biomed Anal ; 243: 116085, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38471254

RESUMO

Eltrombopag is an oral non-peptide thrombopoietin receptor (TPO-R) agonist indicated for the treatment of thrombocytopenia in patients with persistent or chronic immune thrombocytopenia (idiopathic thrombocytopenic purpura, ITP) or chronic hepatitis C infection and the treatment of severe aplastic anemia. The purpose of this research was to assess the possible impurities that may carry over to eltrombopag from its precursor Eltro-1 (3'-amino-2'-hydroxy-[1,1'-biphenyl]-3-carboxylic acid) and to develop a specific analytical method for the determination of these impurities. Eltro-1 samples synthesized by two different synthesis routes were investigated during the evaluation and method development studies. Besides the expected process-related impurities (Eltro-1A - Eltro-1J), e.g., starting materials, intermediates, and/or compounds formed from their further reactions, an unknown impurity detected above 0.10% was identified by LC-MS, synthesized and fully characterized by NMR, MS and FTIR (Eltro-1K). Accordingly, an HPLC-RP method for the determination of eleven impurities (Eltro-1A - Eltro-1K) in Eltro-1 was developed and validated according to ICH Q2. The control limits for impurities in Eltro-1 were set at ≤ 0.15% for Eltro-1A - Eltro-1J and ≤ 1.0% for Eltro-1K based on fate, spike-purge and carryover studies and in accordance with the ICH M7 classification for impurities in drug substance. Eltro-1 and eleven impurities at the specification limit were separated from each other and the diluent peaks with sufficient resolution without interference. Separation was performed on a Waters XBridge C18 column (150 × 4.6 mm, 3.5 µm) at 40 °C with a 10 µL injection volume at a detection wavelength of 220 nm and 15 °C sample temperature. The gradient elution is performed at a flow rate of 1.0 mL/min for 40 min with mobile phase A (0.1% orthophosphoric acid in water) and B (acetonitrile) according to the following program: Time (min) / Acetonitrile (%): 0/0, 35/70, 36/0, 40/0. Test and standard solutions were prepared at a concentration of 1.0 mg/mL and 1.0 µg/mL, respectively, using a mixture of mobile phase A and acetonitrile (75/25) as diluent. This is the first specific, selective, sensitive, linear, precise, accurate, and robust HPLC method for the determination of Eltro-1A - Eltro-1K in Eltro-1, which showed no significant degradation under thermal stress, photostability (UV and VIS), and standard accelerated and long-term stability conditions.


Assuntos
Benzoatos , Contaminação de Medicamentos , Hidrazinas , Espectrometria de Massa com Cromatografia Líquida , Pirazóis , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Estabilidade de Medicamentos , Acetonitrilas , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...